The Optics of Contact Lenses

IAO/COS March 7, 2014 Peter A. Russo, OD, FAAO Professor Department of Ophthalmology yola University Medical Center Edward Hines Jr. VAMC

No financial disclosures.

Why do we see better with CL's vs. glasses?

Because:

- We don't; we just look better in CL's.
- The coating on CL's doesn't scratch when I clean them like glasses do.
- c. CL's are thinner than glasses.
- **D.** A CL wearer is always looking through the optical center of the lens.
- E. There are fewer aberrations with a CL.

Why do we see better with CL's vs. glasses?

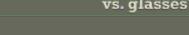
Early studies comparing acuity with spectacles vs. scl or rigid cl's

- Hard lenses: 16% one line increase; 55% no change; 28% one line decrease • 88% no change with OR
- Soft lenses: 8% one line increase; 24% no change; 61% one line decrease • 67% no change with OR
- No change/increase by one line 2:1 with hard over soft cl er S. Visual acuity in hard and soft contact lens wearers: a comparison. J AOA 1978. 49(3)

Why do we see better with CL's vs. glasses?

Answer:

- We don't; we just look better in CL's.
- **Improved self perception**
- Adolescent and Child Initiative to Encourage Vision Empowerment (ACHIEVE) study
 - Spectacles vs. SCL wear
 - Self perception with SCL improved for:
 - Physical appearance
 - Athletic competence
 - Social acceptance


line, J et al. Randomized trial of the effect of contact lens wear on self-ception in children. Optom Vis Sci. 2009 Mar:86(3):222.32.

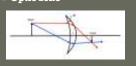
Why do we see better with CL's vs. glasses?

Answer:

Vechsl

- We don't; we just look
 better in CL's.
 The coating on CL's
- I clean them like glasses do. glasses do. CL's are thinner than
- glasses.

Equivalent power formula


Why do we see better with CL's vs. glasses?

Spectacle magnification		
• Axial myopia cl	= sp	ec >>
 Axial hyperopia 	= spec	>> cl
 Refractive myopia 	<< spec	< cl
 Refractive hyperopia 	>> spec	> cl
• Unencumbered field of view		
 CL closer to eye's entrance pupil. 		
• High ametropia: improved VF with CL		

Why do we see better with CL's vs. glasses?

- Answer: A. We don't; we just look better in CL's. B. The coating on CL's doesn't scratch when The them like
- I clean them like glasses do.
- A CL wearer is always looking through the optical center of the lens.

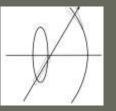
Optical center moves with the eye Optic zone

Lens Aberrations: ABC's

act Lone Pro

ce. 2005 Li

ott. Chap 7A.


Low order aberrations • Sphere, cylinder

na of contact l

inWJ. Optical phen

- **Higher order aberrations**
- When considering off-axis rays
 - A=Astigmatism of Oblique Incidence
 - B=Barrel/pincushion distortion
 - · C=Coma/Chromatic aberration
 - S=Spherical aberration

Lens Aberrations: ABC's

Astigmatism of Oblique Incidence Oblique rays encounter different radii of

curvature at front/back lens surfaces


- Essentially creates sphero-cylinder along path traveled
- Result: astigmatic image with two line foci
- Curved image = curvature of field

Lens Aberrations: ABC's

Barrel/pincushion Distortion

- **Image forming rays** from the corners go through peripheral lens.
- Increased power in the periphery magnifies or minifies corner more than sides
 - Plus lens = pin cushion Minus lens = barrel distortion

Lens Aberrations: ABC's

Spherical aberration

- Peripheral rays subject to increased prismatic effect and more power creating blur interval along axis
- Reduced, physiologically in the
- physiologically in the eye, by:
 Pupil acting as aperture.
 Flatter peripheral cornea radius of curvature.
 Slightly higher index of refraction for nucleus of crystalline lens.

Why do we see better with GP lenses vs. soft contact lenses?

Because:

- GP lenses hurt more so you have to get something out of wearing them.
- **B.** You don't; GP lenses move more which degrades the image.
- c. They mask astigmatism.
- **D.** There is no water content with GP lenses to degrade the image.

Why do we see better with GP lenses vs. soft contact lenses?

- Because: A. GP lenses hurt more so you have to get
- You don't; GP lenses move more which degrades the image. Line of sight stays within optic zone as lens moves They mask astigmatism.
- I'hey mask astigmatism.

 · GP mask up to 2.50 D cylinder with spherical lenses

 · Hide surface irregularity

 · Fluctuating vision:

 · Poor surface wetting

 · Lens deposits/surface scratches

 · Corneal staining

 · Toric lens stotation

 · GP lens flexure

Why are the optics better with **GP** lenses?

Materials

- Rigid
- PMMA
- Silicone acrylates
- Flurosilicone acrylates
- Dehydrated state
- Hydrophilic surface
- Soft
- Hydrogel
- Silicone hydrogel
- Hydrated state: up to 70% water content
- Hydrophilic surface

Why do we use minus cylinder for contact lens prescriptions?

Because:

- An optometrist invented CL's.
- **B.** Minus cylinder was invented first.
- c. Mostly near sighted people wear CL's.
- **D.** Optometrists use minus cylinder and they fit more CL's.
- E. We should use plus cylinder, after all the cornea is convex.

Why do we use minus cylinder for contact lens prescriptions?

BECAUSE: AN OPTOMETRIST INVENTED CL'S.

- Theoretical da Vinci (1508) CL conceptualized Descartes (1636)
- Scientist Young (1801)
- Horng (1807) Described neutralizing cornea Herschel (1827) Astronomer/physicist Proposed mold of eye to correct vision

- ctual Scleral Lenses (glass) A.F. Muller (1887): glassblower Protective shell Fick (1888) Physician; diagnostic fitting; rx Kalt (1888): first? Feinhloom (1936): O.D.; PMMA scleral portion; glass center Obrig (1937): all PMMA Corneal lenses Tuober (1942): tochesicies

- Corneal Jenses Tuoky (1948): Dbrig; PMMA corneal lens GP materials Gaylord (1971): chemist; assisted by Seidner brothers (OD/engineer) > Polycon material Wichterle/Lim (1951): chemists Led to first sci 1971

Why do we use minus cylinder for contact lens prescriptions?

Because:

- An optometrist invented CL's. Minus cylinder was invented first. (No)
- Mostly near sighted people wear CL's.
- Self evident: myopia more debilitating; earlier age of onset; more availability of parameters
- But, can write hyperopic or myopic Rx in either
- D. Optometrists use minus cylinder and they fit more CL's.
 - CL spectrum 2013 survey: 87% of respondents were OD's
 - 24,000 ophtho in US; 35,000 OD's in US 37 millions cl wearers in US

Why do we use minus cylinder for contact lens prescriptions?

- **Refraction/retinoscopy**
- Dry (non-cycloplegic)
- Dry (non-cycloplegic)

 Control accommodation by keeping both primary meridians "fogged" with plus lenses
 Neutralize most plus meridian with spheres; need minus cylinder to neutralize second meridian

 Wet (cycloplegic)

 Accommodation temporarily eliminated by drops
 Over minus during retinoscopy = easier to see 'With Motion'

 Cornea = convex; all eyes are plus powered
 Guilstrand's schematic eye: 60 D over 21 power

- Gullstrand's schematic eye: 60 D overall power Fit GP to least minus/flattest meridian; creates minus cylinder tear layer to correct plus cylinder error Back surface toric scl Minus cylinder = back lens surface (concave) Plus cylinder = plus lens surface (convex)

Why is the power different from glasses to contact lenses?

Because:

- Some people make errors when ordering.
- It just depends on what they refracted to that day.
- The tear layer under the CL changes the power. Myopic people need more power in
- CL's.
- The vertex distance between glasses and the cornea changes the required power.

Why is the power different from glasses to contact lenses?

Because:

- Some people make errors when ordering.
- Easy to make transposition errors going from plus to minus cylinder
 -3.25+1.75x075 → -1.50-1.75x165
 Error: 0.00+1.25x180; use plano

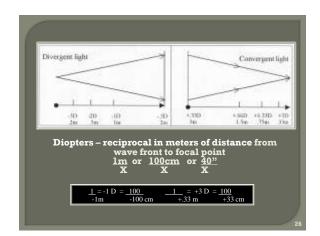
- Error: -4.25+0.00x180; use 'sph' Error: use 3 digits for axis \rightarrow x005 not x5
- Can you have axis 007? Phoropter leveled; scale It just depends on what they refracted to that day. Huh?

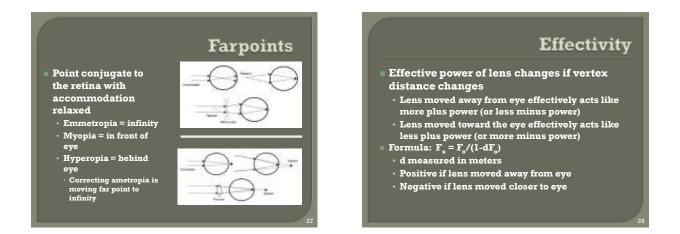
Why is the power different from glasses to contact lenses?

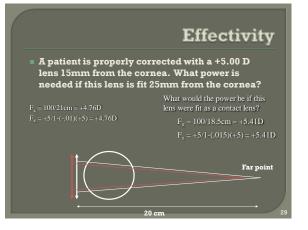
- **Convert prescription to** minus cylinder form.
- Drop cylinder power (when refractive equals corneal cylinder).
- Adjust for vertex power if sphere power $\geq \pm 4.00 \text{ D}$ No tear layer for scl
- **Compensate for tear layer:** If BC (D)>flat K: plus tear laye add minus (SAM)
- If BC (D)< flat K: minus tear layer, add plus (FAP)

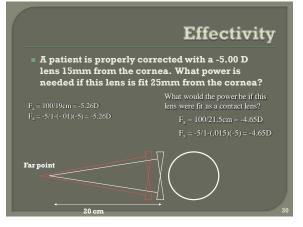
from glasses to contact lenses?

Keratometry


• OD 43.75/45.50@105 (+1.75x105)


Accurate refraction


- OD -4.50+1.50x110 20/20 • Trial 9.4 diam; 7.63 BC; -3.00 • 7.63 mm = 44.25 D
- Convert: -3.00-1.50x020
- Drop cylinder
- VD adjustment: None
- Tear layer adjustment: -0.50
- Final lens power: -3.50


Vergence of Light

- Divergence
- Negative
- Minus vergence
 Moving away from
- its origin
- Convergence • Positive
- Positive
- Plus vergenceMoving toward its
- focus
- Parallel
- Zero vergence

Vertex conversion chart Converting from spectacle plane to cornea plane Always relatively more plus at corneal plane -10 = -8.87 1- (0.013)(-10)

Why is the power different from glasses to contact lenses? Effectivity Less cylinder if high minus • More cylinder if high plus -12.00+3.00x090 L12 0012 00.000 +16.25 ----+15.00 -12.0 14.25+4.50+10

Why do we use soft toric lenses frequently but toric GP rarely?

Because:

- You can only correct low amounts of astigmatism with contact lenses.
- Soft toric lenses are better for you.
- c. Toric GP lenses hurt.
- **D.** Toric GP are hard to make.

* 37 million CL wearers in the US * 2013 fits and refits: 66% SH; 24% hydrogel; 8% GP; 2% hybrid * 24% soft toric; 5% spherical GP; approx 2% toric GP

nses 2013 Annual Report, CL S

Why do we use soft toric lenses frequently but toric GP rarely?

Because:

- You can only correct low amounts of astigmatism with contact lenses.
- Frequent replacement scl torics: 0.75/1.25/1.75/2.25 cylinder powers
- Custom powers to 10 D cylinder in SCL or GP B. Soft toric lenses are better for you.
- Higher complications with scl; better optics with GP
- **Toric GP lenses hurt.**
- Lens awareness improves with adaptation.
- **D** Toric GP are hard to make.

Why do we use soft toric lenses frequently but toric GP rarely?

Spherical GP neutralizes corneal cylinder Residual astigmatism = refractive cylinder minus corneal cylinder

Examples K's: 41.00/42.25@090 (+1.25X090) Rx: -4.50+1.25X090 RA = (+1.25X090) - (+1.25X090) = (+0.00X090) Spherical GP or toric SCL K's: 43.50/44.25@090 (+0.50X090) Rx: -3.25+2.25X090 Toric SCL or RA = (+2.25X090) - (+0.50X090) = (+1.75X090) GP front toric K's: 42.50/45.50@090 (+3.00X090) Rx: -5.50+4.50X090 RA = (+4.50X090) - (+3.00X090) = (+1.50X090) Bitoric GP Toric SCL or

Why do we use soft toric lenses frequently but toric GP rarely?

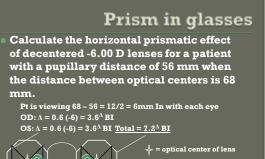
Keratometry • OD 43.75/45.50@105

(+1.75x105)

- Accurate refraction OD -4.50+1.50x110 20/20 Trial 9.4 diam; 7.63 BC; -
- 3.00
- 7.63 mm = 44.25 D
 Convert: -3.00-1.50x020
- Drop cylinder VD adjustment: None
- Tear layer adjustment: -0.50
- Final lens power: -3.50

Front toric

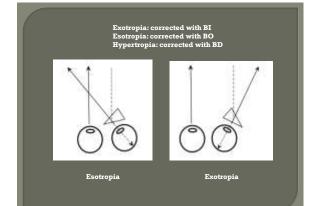
- Specify spherical BC
 Specify desired sph-cyl
- Applied to front surface Prism in lens; orientation mark
- **Bi-toric**
- Apply fitting paradigm to each primary meridian
- Can verify 2 base curves on radiuscope and 2 powers on lensometer


What can prism do in a contact lens?

- **A.** Prism in CL's corrects diplopia just like it does in glasses.
- **B.** Prism in CL's can improve the eyes posture in an accommodative esotropia.
- c. Prism in CL's can make a crossed eye look straight.
- Prism in CL's can weight the CL to hold it in position.

Prism

Definition of a prism diopter


- One prism diopter displaces light one centimeter at one meter
- How much will a 5^{Δ} prism displace an object at 40cm?
- 1 pd = 1cm/1m => 5pd = X/0.4m => X = 2cm **Prentice's Rule**
- Amount of prism equals distance from optical center times power along that meridian

= patient's line of

What can prism do in a contact lens?

- A. Prism in CL's corrects diplopia just like it does in glasses.
 - Prismatic effect depends on where you look through an optical lens (same for glasses or CL)
 - SCL essentially centered over visual axis with
 - little movement No displacement = no prism
 - GP lens will create prism based on lens movement
 - But small amounts; lens moves with the eye; often equal rx Prism to weight toric lens
 - May notice vertical imbalance if toric in one eye or significant anisometropia

What can prism do in a contact lens?

B. Prism in CL's can improve the eyes

posture in an accommodative esotropia.

- Lateral prism: no way to maintain position Minus spectacles cause BI effect at near More esophoric = decreased convergence demand Offset by less accommodative demand (less acc-conv) CL's: no effect on convergence; accommodate more Plus spectacles cause BO effect at near

- More exophoric = increased convergence demand Offset by more accommodative demand (more acc-conv) CL's: no effect on convergence; accommodate less