The Optics of Contact Lenses

Why do we see better with CL's vs. glasses?

Because:

A. We don't; we just look better in CL's.
B. The coating on CL's doesn't scratch when I clean them like glasses do.
C. CL's are thinner than glasses.
D. A CI wearer is always looking through the optical center of the lens.
E. There are fewer aberrations with a CL.

Why do we see better with CL's

vs. glasses?

Early studies comparing acuity with spectacles vs. scl or rigid cl's

- Hard lenses: 16% one line increase; 55% no change; 28\% one line decrease - 88% no change with OR
- Soft lenses: 8% one line increase; 24% no change; 61% one line decrease - 67% no change with $O R$
- No change/increase by one line 2:1 with hard over soft cl
Wechsler S. Visual acuity in hard and soft contact lens wearers: a comparison.J AOA 1978. 49(3) 251-256.

Why do we see better with CL's vs. glasses?

Why do we see better with CL's

 vs. glasses?
Answer:

A. We don't; we just look better in CL's.

Improved self perception

- Adolescent and Child Initiative to Encourage Vision Empowerment (ACHIEVE) study
- Spectacles vs. SCL wear
- Self perception with SCL improved for:

Physical appearance
Athletic competence
Social acceptance
Walline, J et al. Randomized trial of the effect of contact lens wear on self-
perception in children. Optom Vis Sci. $2009 \mathrm{Mar;} 86(3): 222.32$.

Why do we see better with CL's vs. glasses?

Spectacle magnification

- Axial myopia
$=$ spec $\quad \gg$ cl
- Axial hyperopia $\quad=$ spec $\quad \gg \mathrm{cl}$
- Refractive myopia <<spec < cl
- Refractive hyperopia
>> spec
$>\mathrm{cl}$
Unencumbered field of view
- CL closer to eye's entrance pupil.
- High ametropia: improved VF with CL

Benjamin WJ. Optical phenomena of contact lenses. Clinical Contact Lens Practice. 2005 Lippincott. Chap 7A.
p157

Why do we see better with CL's

 vs.glasses?Answer:
A. We don't; we just look better in CL's.
B. The coating on Cir's doesn't scratch when I clean them like glasses do.
c. CI's are thinner than glasses.
D. ACI wearer is always

Optical center moves with the eye Optic zone

optical center of the lens.

Lens Aberrations: ABC's

Low order aberrations

- Sphere, cylinder

Higher order aberrations

When considering off-axis rays

- $\bar{A}=$ Astigmatism of Oblique Incidence
- B=Barrel/pincushion distortion
- C=Coma/Chromatic aberration
- S=Spherical aberration

Lens Aberrations: ABC's

Asticmatism of
Oblique Incidence

Oblique rays encounter different radii of curvature at front/back lens surfaces

- Essentially creates sphero-cylinder along path traveled
- Result: astigmatic image with two line foci
Curved image = curvature of field

Lens Aberrations: ABC's

Barrel/pincushion

Distortion

Image forming rays from the corners go through peripheral lens.
Increased power in the periphery magnifies or minifies corner more than sides

- Plus lens = pin cushion
- Minus lens = barrel distortion

Lens Aberrations: ABC's

Chromatic aberration
Prism disperses light into spectral components

- Blue refracted more than red
- Creates chromatic interval
- Basis for duochrome test

ABBE value of spectacle lenses: higher $\#=$ less CA

- Class $(1.523)=59 ;$ CR-39 $(1.49)=58 ;$ Polycarbonate $(1.58)=30$

Coma
Off-axis peripheral rays create comet-shaped deformity to nonizaxial portions of the image

Lens Aberrations: ABC's

Spherical aberration Peripheral rays subject to increased prismatic effect and more power creating blur interval along axis
Reduced,
physiologically in the eye, by:

- Pupil acting as aperture.
- Flatter peripheral cornea radius of curvature.

- Slightly higher index of refraction for nucleus of crystalline lens.

Why do we see better with GP
 lenses vs. soft contact lenses?

Because:
A. GP lenses hurt more so you have to get
something out of wearing them.
3. You don't; GP lenses move more which
degrades the image.
Line of sight stays within optic zone as lens moves
c. They mask astigmatism.

GP mask up to 2.50 D cylinder with spherical lenses
Hide surface irregularity
Fluctuating vision:
Poor surface wetting
Corneal staining
Toric lens rotation
GP lens flexure

Why do we see better with GP

 lenses vs. soft contact lenses?
Because:

A. CP lenses hurt more so you have to get something out of wearing them.
B. You don't; CP lenses move more which degrades the image.
C. They mask astigmatism.
D. There is no water content with GP lenses to degrade the image.

Why are the optics better with GP lenses?

Materials

- Rigid

PMIMA
Silicone acrylates
Flurosilicone acrylates
Dehydrated state
Hydrophilic surface

- Soft

Hydrogel
Silicone hydrogel

- Hydrated state: up to 70\% water content

Hydrophilic surface

Why do we use minus cylinder for contact lens prescriptions?

Because:

A. An optometrist invented CI's.
B. Minus cylinder was invented first.
c. Mostly near sighted people wear CL's.
D. Optometrists use minus cylinder and they fit more CH's.
E. We should use plus cylinder, after all the cornea is convex.

Why do we use minus cylinder

 for contact lens prescriptions? BECAUSE:AN OPTOMETRRIST INVENTED CL'S.

Theoretical
da Vinci (1508)
CL conceptualized
Descartes (1636)
Descartes (1636)
Scientist
Young (1801)
Described neutralizing
Herschel (18
Herschel (1827)
Pront physicist Proposed mold of eye
to correct vision to correct vision

Actual

Scleral Lenses (glass)
A.F. Muller (1887): glassblower Protective shell
Fick (1888)
Physician; diagnostic fitting; r x
Kali (1888): first?
Feinbloom (1936): O.D.; PMMK:
leral portion,glass cent
Corneal lenses
Tuohy (1948): technician for Obrig; PMIMA corneal lens
GP materials
Gaylord (1971): chemist; assisted by Seidner brother (OD/engineex) \rightarrow Polycon
Wichterle/Lim (1951): chemists Led to first scl 1971

Why do we use minus cylinder

for contact lens prescriptions?

Because:

A. An optometrist invented CL's.
B. Minus cylinder was invented first. (No)
c. Mostly near sighted people wear CL's.

Self evident: myopia more debilitating; earlier age of onset; more availability of parameters

- But, can write hyperopic or myopic Rx in either form
D. Optometrists use minus cylinder and they fit more CL's.
CL spectrum 2013 survey: 87% of respondents were OD's
- 24,000 ophtho in US; 35,000 OD's in US
- 37 millions cl wearers in US

Why do we use minus cylinder

for contact lens prescriptions?

Refraction/retinoscopy

- Dry (non-cycloplegic) Control accommodation by keeping both primary meridians "fogged" with plus lenses Neutralize most plus meridian with spheres; need minus cylinder to neutralize second meridian
- Wet (cycloplegic)

Accommodation temporarily eliminated by drops Over minus during retinoscopy = easier to see 'With Motion'
Cornea = convex; all eyes are plus powered

- Gullstrand's schematic eye: 60 D overall power
- Fit GP to least minus/flattest meridian; creates minus cylinder tear layer to correct plus cylinder error Back surface toric scl
- Minus cylinder = back lens surface (concave)

Plus cylinder = plus lens surface (convex)

Why is the power different

 from glasses to contact lenses?
Because:

凡. Some people make errors when ordering.
B. It just depends on what they refracted to that day.
c. The tear layer under the CL changes the power.
D. Myopic people need more power in CL's.
E. The vertex distance between glasses and the cornea changes the required power.

Why is the power different from glasses to contact lenses?

Because:
A. Some people make errors when ordering.

- Easy to make transposition errors going from plus to minus cylinder
- $-3.25+1.75 \times 075 \rightarrow-1.50-1.75 \times 165$
- Error: $0.00+1.25 \times 180$; use plano
- Brror: $-4.25+0.00 \times 180$; use 'sph'
- Error: use 3 digits for axis $\rightarrow \times 005$ not $\times 5$

Can you have axis 007? Phoropter leveled; scale
B. It just depends on what they refracted to that day. Huh?

Why is the power different from glasses to contact lenses?

- Convert prescription to minus cylinder form.
- Drop cylinder power (when refractive equals corneal cylinder).
- Adjust for vertex power if sphere power $\geq \pm 4.00 \mathrm{D}$
No tear layer for scl
- Compensate for tear layer: -If BC (D)>flat K: plus tear layer,
 add minus (SAM)
-If BC (D) < flat K: minus tear layer, add plus (FAP)
from glasses to contact lenses?

Keratometry

- OD 43.75/45.50@105 (+1.75×105)

Accurate refraction

- OD -4.50+1.50x110 20/20
-Trial 9.4 diam; 7.63 BC; -3.00 $7.63 \mathrm{~mm}=44.25 \mathrm{D}$
- Convert: -3.00-1.50x020
- Drop cylinder
- VD adjustment: None
- Tear layer adjustment: -0.50
- Final lens power: -3.50

Vergence of Light

- Divergence
- Negative
- Minus vergence
- Moving away from its origin
- Convergence

- Positive
- Plus vergence
- Moving toward its focus
- Parallel
-Zero vergence

Farpoints

- Point conjugate to the retina with accommodation relaxed
- Emmetropia = infinity
- Myopia = in front of eye
- Hyperopia = behind eye
Correcting ametropia is moving far point to infinity

Effectivity

Effective power of lens changes if vertex distance changes

- Lens moved away from eye effectively acts like more plus power (or less minus power)
- Iens moved toward the eye effectively acts like less plus power (or more minus power)
Formula: $\mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{o}} /\left(1-\mathrm{d} \mathrm{F}_{\mathrm{o}}\right)$
- d measured in meters
- Positive if lens moved away from eye
- Negative if lens moved closer to eye

Effectivity

A patient is properly corrected with a +5.00 D lens 15 mm from the cornea. What power is needed if this lens is fit 25 mm from the cornea?

What would the power be if this
$\mathrm{F}_{\mathrm{x}}=100 / 21 \mathrm{~cm}=+4.76 \mathrm{D}$
lens were fit as a contact lens?
$\mathrm{F}_{\mathrm{x}}=100 / 18.5 \mathrm{~cm}=+5.41 \mathrm{D}$
$\mathrm{F}_{\mathrm{x}}=+5 / 1-(.015)(+5)=+5.41 \mathrm{D}$

Effectivity

A patient is properly corrected with a -5.00 D lens 15 mm from the cornea. What power is needed if this lens is fit 25 mm from the cornea?

Vertex

conversion chart

- Converting from spectacle plane to cornea plane
Always relatively more plus at corneal plane
\qquad $=-8.87$ 1-(0.013)(-10)

Why is the power different from glasses to contact lenses?

Effectivity

- Less cylinder if high minus
- More cylinder if high plus
$-12.00+3.00 \times 090$

Why do we use soft toric lenses frequently but toric GP rarely?

Because:

A. You can only correct low amounts of astigmatism with contact lenses.

- Frequent replacement scl torics:
0.75/1.25/1.75/2.25 cylinder powers

Custom powers to 10 D cylinder in SCL or GP
B. Soft toric lenses are better for you.

- Higher complications with scl; better optics with GP
c. Toric GP lenses hurt.

Lens awareness improves with adaptation.
D. Toric GP are hard to make.

* 37 million CL wearers in the US
* 2013 fits and refits: 66\% SH; 24\% hydrogel; 8\% GP; 2\%
hybria
* 24% soft toric; 5% spherical GP; approx 2% toric GP

Why do we use soft toric lenses

 frequently but toric GP rarely?Spherical GP neutralizes corneal cylinder Residual astigmatism = refractive cylinder minus corneal cylinder

Examples	
K's: 41.00/42.25@090 (+1.25X090) Rx: $-4.50+1.25 \times 090$ $\mathrm{RA}=(+1.25 \times 090)-(+1.25 \times 090)=(+0.00 \times 090)$	Spherical GP or toric SCI
K's: 43.50/44.25@090 (+0.50X090) Rx: -3.25+2.25X090 $R \bar{A}=(+2.25 \times 090)-(+0.50 \times 090)=(+1.75 \times 090)$	Toric SCL or GP front toric
K's: 42.50/45.50@090 (+3.00X090) Rx: $-5.50+4.50 \times 090$ $\mathbf{R A}=(+4.50 \times 090)-(+3.00 \times 090)=(+1.50 \times 090)$	Toric SCL or Bitoric GP

Why do we use soft toric lenses frequently but toric GP rarely?

Keratometry
OD 43.15/45.50@105
(+1.75×105)
Accurate refraction

- OD -4.50+1.50x110 20/20
- Trial 9.4 diam; 7.63 BC; 3.00
$7.63 \mathrm{~mm}=44.25 \mathrm{D}$
- Convert: -3.00-1.50x020
- Drop cylinder
- VD adjustment: None
- Tear layer adjustment: 0.50
- Final lens power: - $\mathbf{3 . 5 0}$

Front toric

- Specify spherical BC
- Specify desired sph-cyl rx

Applied to front surface Prism in lens; orientation mark
Bi-toric

- Apply fitting paradigm to each primary meridian
- Can verify 2 base curves on radiuscope and 2 powers on lensometer

What can prism do in a contact

 lens?
Prism

爪. Prism in CL's corrects diplopia just like it does in glasses.
B. Prism in CL's can improve the eyes posture in an accommodative esotropia.
c. Prism in CL's can make a crossed eye look straight.
D. Prism in CI's can weight the CI to hold it in position.

Prism in glasses

Calculate the horizontal prismatic effect of decentered -6.00 D lenses for a patient with a pupillary distance of 56 mm when the distance between optical centers is 68 mm.

Pt is viewing $68-56=12 / 2=6 \mathrm{~mm}$ In with each eye
OD: $\Delta=0.6(-6)=3.6^{\Delta} \mathrm{BI}$
OS: $\Delta=0.6(-6)=3.6^{\Delta}$ BI Total $=7.2^{\Delta}$ BI

What can prism do in a contact lens?

A. Prism in CL's corrects diplopia just like it does in glasses.

- Prismatic effect depends on where you look
through an optical lens (same for glasses or CI)
- SCI essentially centered over visual axis with little movement
No displacement = no prism
- GP lens will create prism based on lens movement

But small amounts; lens moves with the eye; often equal $\mathbf{r x}$

- Prism to weight toric lens

May notice vertical imbalance if toric in one eye or signifficant anisometropia

Exotropia: corrected with BI Esotropia: corrected with BO Hypertropia: corrected with BD

Esotropia

Exotropia

What can prism do in a contact

lens?
A. Prism in CL's corrects diplopia just like it does in glasses.
B. Prism in CL's can improve the eyes posture in an accommodative esotropia.

Lateral prism: no way to maintain position
Minus spectacles cause BI effect at near
More esophoric = decreased convergence demand
Offset by less accommodative demand (less acc-conv) CL's: no effect on convergence; accommodate more
Plus spectacles cause BO effect at near
More exophoric $=$ increased convergence demand

- Offset by more accommodative demand (more acc-conv)
- CL's: no effect on convergence; accommodate less

